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ABSTRACT

In order to expand the predictive capability of single-
point turbulence closure models to account for the
early-stage transition regime, a methodology for the
formulation and calibration of model equations for the
ensemble-averaged disturbance kinetic energy and en-
ergy dissipation rate is presented. The calibration s
based on homogeneous shear flow where disturbances
can be described by rapid distortion theory (RDT). The
relationship between RDT and linear stability theory
is exploited in order to obtain a closed set of mod-
eled equations. The linear disturbance equations are
solved directly so that the numerical simulation yields
a database from which the closure coefficients in the
ensemble-averaged disturbance equations can be deter-
mined.

INTRODUCTION

Demands on the range of applicability of turbulence
modeling are increasing, and with these increasing de-
mands has come the need to develop models which are
better sensitized to the transition process within the
context of the traditional Reynolds-averaged turbulence
modeling. Thus, a common mathematical framework
linking the laminar regime, with its linear disturbances,
and the fully turbulent regime, with its stochastic fluc-
tuations, needs to be provided.

As a first step toward the development of such a
mathematical framework, Thacker, Gatski and Grosch
(1999) studied the behavior of homogeneous. isotropic
decaving disturbances. I[n turbulence modeling. this
flow is used to calibrate the destruction-of-dissipation
term in the modeled transport equation for the turbu-
lent. dissipation rate. In the lincar disturbance case,
the same functional form of the turbulence model was
found but a new value of the model coefficient for the

destruction-of-dissipation term was required.

For consistency. disturbances are defined as devia-
tions from the ensemble-mean in all flow regimes. The
laminar regime is defined as the region of the flow in
which the ensemble-mean velocity is a stationary solu-
tion of the Navier-Stokes equation. The disturbances
in this regime are small enough in amplitude that their
nonlinear interactions can be neglected. and their evo-
lution is completely predictable from their initial state.
Traditionally, in laminar stability theory. disturbance
fields are studied through the linear Orr-Sommerfeld
equation. which describes the evolution of individual
infinitesimal disturbance modes. Even when a quan-
tity, such as the disturbance energy, is studied. it is the
evolution of the instantaneous quantity rather than an
ensemble average that is investigated. In contrast, the
turbulent regime is defined as the region where the flow
is subject to stochastic fluctuations, arising from non-
linear interactions, which render the behavior of the dis-
turbances unpredictable. In this case, the disturbance
field is traditionally studied through (modeled) trans-
port equations which describe the evolution of mean
turbulent correlations.

In this work. a set of {ensemble) mean disturbance
transport equations, capable of describing the behavior
of the linear disturbance fields, is developed. The ap-
proach is founded on the observation that, even in the
laminar regime, every flow is subject to an inevitable
uncertainty in initial conditions. Therefore. although
each individual disturbance evolves deterministically. a
probability distribution describing the initial (t = 0)
energy distribution of the modes must be introduced
for the calculation of ensemble-mean properties. This
approach is similar to rapid distortion theory (RDT)
in that it is based on linearized disturbance equations:
however, the realm of application is different. RDT
traditionally considers flows at higher Reynolds num-



bers in which the turbulence is fully developed and the
effects of the molecular viscosity can be neglected, us-
ing linearized equations to study the behavior of the
disturbances under rapid (strong) distortion. The ap-
proach taken here, on the other hand, considers linear
disturbances in the early stages of transition where vis-
cous effects must be taken into account. In addition,
RDT is usually applied to short time evolution since
in the turbulence case the nonlinear interactions cause
sufficient growth of the fluctuations to render the linear
approximation invalid after a few eddy turnover times.
In this linearized disturbance case, no such limitation
on the time duration is encountered because viscous ef-
fects result in the decay of the disturbance field at large
times after a relatively small (initial) energetic growth.

More recent extensions of RDT by Salhi, Cambon
and Speziale (1997) have also exploited the connection
with linear stability theory. They studied quadratic
flows in a rotating frame to gain better insight into the
dynamics so that a generalized stability criterion ap-
plicable to turbulent flows could be developed. They
also considered the effect on single-point closure mod-
eling - specifically the deficiencies in predicting elliptic
flows. While the mathematical framework is similar in
this study, the region of interest here is the early-stage
transition regime. Nevertheless, this commonality fur-
ther substantiates the basic assumption that a mathe-
matical framework can be developed which will provide
a set of transport equations capable of describing the
flow (in a mean statistical sense) in the early-stage tran-
_sition regime.

In this study, the earlier analysis of Thacker et al.
(1999) is applied to the case of mean homogeneous
shear. Homogeneous shear flow is commonly used as
a calibration flow for turbulence models because both
turbulent transport and viscous terms can be removed
from the transport equations for the turbulent correla-
tions. The purpose of this study is to use the solution
of the disturbance evolution equations for mean homo-
geneous shear flow as a database in the calibration of
the evolution equations for the ensemble-averaged dis-
turbance correlations. As a first step, the focus is on a
simple disturbance kinetic energy and disturbance dis-
sipation rate {two-equation) description. In such a two-
equation description of homogeneous shear, the terms
in the kinetic energy equation are exact and require
no modeling; whereas, in the dissipation rate equation
both the production-of-dissipation and destruction-of-
dissipation terms require modeling. The two closure
coefficients associated with these terms are determined
from the analysis presented here. Utilization of the dis-
turbance evolution results as a reliable database is sup-
ported by the DNS results of Lee, Kim, and Moin (1990)
who studied homogeneous shear flow at a high-shear
rate. They showed that RDT results compared very
well with the simulation results over the time period ex-
amined. The results herein also show good agreement
with the DNS results of Lee et al. (1990). and are found
to apply at much later times due to the energetic decay
of the disturbance field in the parameter range studied.
Thus, this database will be used to provide insight into
the asymptotic behavior of important dynamic vari-
ables, as well as to provide the necessary information
for the closure model calibration. The resulting closed

disturbance dissipation rate equation can then be used
in the formulation of a transition-sensitized turbulence
model.

LINEAR THEORY AND ENSEMBLE-
AVERAGED CORRELATIONS

In this section, transport equations for the ensemble-
averaged linear disturbance second-moments in homo-
geneous shear flow are constructed. The theoretical de-
velopment presented here parallels that of Townsend
(1970) who described the structure of turbulence in a
free shear flow as a product of the finite distortion of
parcels of turbulent fluid. In this study, the relation-
ship of RD'T with linear stability theory (Speziale et al.
1996, Salhi ct al. 1997} is expanded to include an analy-
sis of the transport equations for the ensemble-averaged
disturbance kinetic energy and the disturbance energy
dissipation rate. As in the turbulence case, such model
equations require closure through the specification of
closure constants. In the two-equation & — ¢ formu-
lation. only the disturbance dissipation rate equation
contains modeled terms which have unknown closure
constants. The homogeneous shear flow is used as a
calibration flow for the production-of-dissipation and
destruction-of-dissipation terms.

In terms of dimensional coordinates (&;,2»,42) in a
fixed frame, the mean velocity is given by [/} = Si,
Uy = U; = 0, where the mean shear S = constant,
and the disturbance velocity and pressure are denoted
by 4, and p, respectively. For the problem of homo-
geneous shear, it is convenient to work (Rogallo 1984)
in a moving frame (Z,72,&2), in which the local mean
velocity is zero and the coordinates are given by

,f‘l = f‘l —( Sf )i‘Q
Iy = Iy
f2 = Fa. (1)

where { is time. The mean shear S and the viscos-
ity » determine the time scale T = 57!, length scale
L = VuvS—1, velocity scale U7 = \/IE, and pressure scale
P =17 = 1S for the flow. This leads to the introduc-
tion of dimensionless variables x; = #,/L (fixed frame),
2% = §,/L {moving frame), t = {/T, u;, = @,/U, and
p = p/P. The linear approximation is based on the
assumption that the nonlinear terms u, g—:f. in the dis-

turbance momentum equations, can be neglected with
respect to both the viscous term ¥92u, and the mean
shear term u,dl’,/dx,. This approximation remains
valid as long as the amplitude of the disturbance ve-
locity remains small compared with the velocity scale
Vs,

An arbitrary solution of the incompressibility condi-
tion and linearized Navier-Stokes equations in the mov-
ing frame can be written as a linear superposition

u,(x',t)
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p(x’. 1) /dgkp(k,t)e'k’x’, {
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where the mode amplitudes f,(k.t) and p(k. t) satisfy

Eofi +kofs +hafo =0 (3)
fi+ frtikip = =K fy (1)
fa+ikip = =K7 1 (5)
fotikap = —KN*fa . (6)

with &) = ko — thy, K2 = ki + l\':f + k2, and the wave
numbers (ky. k2. k+) are constant in time. The solution
for the velocity disturbance modes can be written in
the form

Stk ) = M (k. t) f,(k.0)e 790 (7)

where the exponent

/ K2 di

= %k;’ = ky ka4 (kkoyt (%)

q(k.t)

arises from the viscous damping of all modes. The
transfer matrix M has non-vanishing components

1\111 = .'”W =1
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k3
Kot (K2 — Fok!, + k2
bikat(ky — hak +43) ()
ky A

with

1

ki = (ki +k2)*
1 k2

] tan™! (—)
’ ki

O = tan~! (:H> (10)

The initial mode amplitudes f;(k.0) are elements
of an ensemble with mean zero. and covariance
(f.(k.0)f,(1,0)). Assuming that the initial disturbance
field is homogeneous, isotropic, and has finite energy
Io. the initial covariance is given by the same expres-
sion as that used by Thacker ct al. (1999) for the case
of zero mean shear with no houndary

« KoP(k), (11)

is the probability distribution for disturbance second-
moments, and the parameter a, related to the variance
of the distribution. will be given a physical mterpreta-
tion in what follows. This probability distribution is
consistent with a &* low wave number behavior for the
encrgy spectrum £ (k) and, in the case of hinear distur-
bances in zero-mean-shear flow. leads to a 2 decay
law for the mean disturbance kinetic energy.

The disturbance mode covariance is related to the
energy spectrum tensor by

Sk ) [ (1)) = B (k.08 (k + 1), (13)
o it follows from Eq.(7) that
E (k. t) = Ma(k. t) Mmik.t)
x Eorm(k)e ~24k0 (11)
where, ax a result of {11).

kok,
k2

Eou (k) = E.,(k.0) = (5,J - ) KoP(k) (15)

is the initial energy spectrum tensor.

The energy spectrum tensor is the fundamental quan-
tity from which all disturbance second-moments are de-
rived by integration over wave number space. Of par-
ticular interest are the disturbance stress tensor

mm=/fk&mﬂ. (16)

the disturbance kinetic energy K (t) = 1,,/2. and the
disturbance dissipation rate

e(t) = /d““'k K2 Ei(k. t). {17)

A physical interpretation can be given to the param-
eter a. which appears in the probability distribution
(12). by performing the integral in (17) at time zero to
obtain =5 = 51 /a. In terms of the dimensional distur-
bance kinetic energy /' = vSK. and the dimensional
dissipation rate & = »S?¢ the parameter a is given by

SR
(,:5( “0):57,0 (1%)
€0

[t will be shown that this quantity, a ratio of the dis-
turbance time scale to the mean flow time scale. regu-
lates the subsequent growth or decay of linear distur-
bances in homogeneous shear flow. In the turbulence
case, the variable n = S]{'/é also plays a critical role.
Jongen and Gatski (1998) have shown that for turbu-
lent homogencous shear flow, n reaches an equilibrium
value which can be analytically connected to the vari-
ation of the ratio of kinetic energy production to dissi-
pation rate.

MODELED DISTURBANCE TRANSPORT
EQUATIONS

The ensemble-mean kinetic energy and dissipation
rate for linear disturbances satisfy evolution equations



which can be derived from the linearized Navier-Stokes
equations (in the fixed frame). In this homogeneous
flow, gradients of all ensemble-mean quantities vanish,
and the (dimensionless) kinetic energy and dissipation
rate equations reduce to

[.\'I—-le—é':,p]\'—f. (19)
§="P, - D, (20)
where P (= —712) is the kinetic energy production,
. Ju, du, Juy Juy >)
= - — -_—
P <<al-l 01-2> + < dr, Or,
= —z/ d'k [kik; Eii + K7 E) (21)

is the production-of-dissipation, and

D o= FPu,  u,
£ Ox,0r Or,0rk

2/ d°kK* E,, (22)

is the destruction-of-dissipation. From Egs. (19) and
{20). it is seen that only the disturbance dissipation rate
equation requires closure models. In the standard i —¢
formulation, the production-of-dissipation is modeled
by

£

P, = —Coy =12, (23)
K
which gives
i K P, .
Cep = =P. = — . 24
! TeTz e Pr (24)

for the production-of-dissipation coefficient. The de-
struction-of-dissipation is modeled by

o2
=Cp— 25
D, Ce2 e (25)
which yields
Cez = I—:DQ (26)
€

for the destruction-of-dissipation coefficient.

Recall that the components F.; of the energy spec-
trum tensor are completely defined by Egs. (7) through
{15). With the solution of these equations, all the quan-
tities of interest, including P. and D., can be obtained
by carrying out the integration in Egs. (16), (17), (21),
and (22). These three-dimensional integrations were
initially performed numerically using cubic and spher-
ical grids. It was found that although the convergence
was good at small times, at times greater than about
1057, the results became strongly dependent on the
grid resolution used (even for grids with as many as
250 million points). The numerical evaluation of the
integrals in Eqgs. (16}, (17), (21), and (22) is there-
fore greatly simplified, and the accuracy significantly

enhanced, by performing the radial integration analyt-
ically.

For the chosen probability distribution (12) the radial
integrals in Egs. (16), (17). (21), and (22) are Gaussian
and can easily be carried out analytically. Convergence
tests show that the resulting angullar integrals had to
be evaluated on grids with a spacing of 1/16 of a degree.

In the next section the results of these computations
are used to analyze the ensemble-averaged transport
equations for the disturbance kinetic energy and dis-
sipation rate. Of particular interest is the dissipation
rate equation Eq. (20) which requires closure. It will
be shown that closure models for P. and P, with con-
stant closure coefficients, can be determined through an
analysis of the long-time behavior of the disturbance
correlations.

RESULTS

Figure 1 shows the evolution of the disturbance ki-
netic energy for different initial values of 5. For a
small value of no (= 0.6}, the energy decays monoton-
ically in time. A transition between this monotonic
decay and substantial growth of the disturbance energy
occurs for values of np between 1.2, where the energy
reaches a minimum and grows briefly, and 2.4, where
the energy grows to a magnitude just equal to its initial
value before decreasing. The temporal evolution shown
in Fig. 1 for thc moderate shear case 10 = 6, which
corresponds to the equilibrium value for n in turbulent
homogeneous shear flow, contrasts with the exponen-
tial energetic growth (Tavoularis 1985) characteristic of
the turbulent case. Here the disturbance kinetic energy
grows to a little beyvond three times its initial value.
Therefore, if the initial disturbance kinetic energy is
considerably less than the natural energy scale ¢S, the
linear approximation should remain valid for all times.
Calculations have also been carried out for 1o = 12 and
18. The evolution of " with time for these other 1o val-
ues (not shown) is very similar to that for 1y = 6. The
only difference is that, as expected, the maximum value
of I reached before the final decay is larger than for
o = 6; for o = 12, A pnar = 6.95K5, and for g = 18,
Nmar = 10.82K%. The initial value of 5o = 18 is a high-
shear case which is very close to the value used in the
DNS study of Lee et al. (1990} (0 = 17). Using the
numerical simulation results, Lee et al. also compared
with RDT and found very good agreement over the time
interval examined {0 < t < 12). The high-shear limit-
ing value 1y — o¢ corresponds to the case traditionally
considered in RDT calculations {(Rogers 1991}, where
viscosity is neglected. The absence of viscosity allows
the energy to grow monotonically, rendering at some
finite time the linear approximation invalid.

Figure 2 shows qualitatively similar trends for the
disturbance dissipation rate e(t) at the corresponding
values of np = 0.6 and 6.0. For the small initial value
o = 0.6, the dissipation rate also decays monotoni-
cally. At the moderate shear rate value 1y = 6, e(t)
grows after a brief initial period of decay, reaches a
peak and then decays at a more rapid rate than the
disturbance kinetic energy. Similar behavior was found
for the higher shear cases of g = 12 and 18.

Since the main focus here is on disturbances which



can eventually grow {and lead to turbulence). the re-
sults for the initial value of g = 0.6 are not of interest.
In addition. while this weak shear case yviclds decaving
disturbances, the validity of neglecting the nonlinear
terms does come into question. As Cambon and Scott
{1999} have pointed out, the contribution of the non-
linear term. while small, may have a cumulative effect
on the dynamics over a period of time. In addition, the
linearized. weak shear case may be inconsistent because
the product term containing the weak mean shear is re-
tained while the nonlincar terms. possibly of the same
magnitude. are omitted. These considerations dictate
that subsequent results will focus on the moderate- and
high-shear cases.

Fig. 3 shows the mapping of the anisotropy invariants
Hi(= ~b,b,,/2) and TH{= bucbribi, /3). where b, (8) =
7, (8) /(2K (t)) = 8:; /3 are the stress anisotropies. Re-
call that initially, an isotropic distribution of the dis-
turbance energy is assumed. The figure shows that. af-
ter { =~ 2, the (realizable) disturbance field migrates
toward the two-component (2(') statc. After + = 10
the disturbance field is 2C and monotonically evolves
towards a one-component (1(') state. Thus, the struc-
ture of the disturbance field is significantly altered by
the imposition of the mean shear. Also shown in Fig.
3 is the invariant map trajectory of the DNS results of
Lee et al. (1990). As can be seen. at carly times (¢
2) both the DNS trajectory and that from the present
calculations, with 1o = 6 and 18, are in phase. and at
later times. even though the DNS evolution lags behind

_the the current results, all of these evolve toward the
same 1C' state. While the results shown in Fig. 3 are
for the 1o = 6 and 1R cases. the same trend toward a 1C°
limit was found to hold for the case of 1o = 0.6. These
disturbance field results are in sharp contrast to the
equilibrium state reached for the turbulent case where
the fixed point invariant values are 1/~ = 0.0043 and
I« = 0.064.

Of particular importance for turbulence modeling are
the closure coefficients (7., and (.. Figure 4 shows
the evolution of these disturbance dissipation rate coef-
ficients. Results for three initial values of 1y are shown
which suggest that a limiting range of values at large
times {and large 1) can be reached. For (. there ix
a modest. change in the value at ¢ = 50 with changes
in no: for no =6, Cey = 2.23. for o = 12, (' = 2.08,
and for 1o = 18, (';; = 2.01. For (., the values range
about. £3Y% from a mean of 2.46. Although it was not
possible to determine analytically the limiting values
for ('.; and ('.», numerical simulations for large values
of 1o at large times showed that the limiting values were
(. = 2.0 and (> =~ 2.5. These values are in contrast.
to the usual values obtained for turbulent closure mod-
els where (.7 ~ 1.45 and €, lies in the range of 1.83
to 1.92.

In the turbulent case, the destruction-of-dissipation
coefficient. was deduced from an analysis of the decay
of isotropic turbulence (e.g. Comte-Bellot and Corrsin
1971). In the analysis of the decay of homogeneous.
isotropic linear disturbances. Thacker et al. (1999) de-
termined a value for C'.; of 1.4 in a boundary-free case.
This is in sharp contrast to the value of 2.5 found in
this homogeneous shear flow. An explanation for this
difference may lie in the structure of the disturbance

field. In the previous decay studies, the disturbance
field was isotropic. and remained isotropic in the ab-
sence of mean shear. However, as the results shown here
indicate, the imposition of mean shear quickly produces
an anisotropic field (see Fig. 3) which eventually drives
the flow close to a 1C" state (Fig. 3). Thus, a more
relevant. flow with which to form a comparison may be
the decay of anisotropic turbulence. Dakos and Gibson
(1990} studied such a flow and deduced from the decay
of the turbulence the destruction-of-dissipation rate co-
efficient ('.». Their anisotropic decay data yielded a
value for (‘> of 2.1% which is relatively close to the
value of 2.5 found here for Ce2. Of course. in spite
of fundamemtal differences in the dyvnamics associated
with each study, it is interesting to note that the intro-
duction of anisotropy in either disturbance field (linear
or turbulent ) significantly increases the value of the co-
efficient (...

CONCLUSIONS

Closure models for the production-of-dissipation rate
and destruction-of-dissipation rate in a lincarized dis-
turbance transport equation for the dissipation rate
have been developed. The study has extended the ap-
proach of Thacker et al. (1999) to mean homogeneons
shear flow in which deterministic solutions of the lin-
earized Navier-Stokes equation are combined with a
probability distribution that accounts for the uncer-
tainty in initial conditions, to obtain mean transport
equations for disturbance correlations i the laminar
regime.

The temporal evolution of the disturbance kinetic en-
ergy and the disturbance dissipation rate were shown
to depend on the magnitude of the initial value of the
time scale ratio 1. The temporal evolution for both the
kinetic energy and dissipation rate was monotonically
decaving for values of 10 < 1.2. For larger values of
1o. both quantities initially decaved. then grew with
time. and then subsequently decayed at large times.
This is in contrast to the turbulent. homogeneous shear
case where the quantities displayed exponential growth.
Nevertheless, it was possible to find approximate val-
ues for the dissipation rate coefficients €.y = 2.0 and
('.> = 2.5, which were considerably larger than the cor-
responding turbulent values.
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Figure 1. Temporal evolution of disturbance kinetic
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